18void Vec3::CheckW()
const
20#ifdef JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
28#ifdef JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
29 #if defined(JPH_USE_SSE)
30 return _mm_shuffle_ps(inValue, inValue, _MM_SHUFFLE(2, 2, 1, 0));
31 #elif defined(JPH_USE_NEON)
32 return JPH_NEON_SHUFFLE_F32x4(inValue, inValue, 0, 1, 2, 2);
35 value.mData[0] = inValue.mData[0];
36 value.mData[1] = inValue.mData[1];
37 value.mData[2] = inValue.mData[2];
38 value.mData[3] = inValue.mData[2];
47 mValue(sFixW(inRHS.mValue))
53#if defined(JPH_USE_SSE)
54 Type x = _mm_load_ss(&inV.
x);
55 Type y = _mm_load_ss(&inV.
y);
56 Type z = _mm_load_ss(&inV.
z);
57 Type xy = _mm_unpacklo_ps(x, y);
58 mValue = _mm_shuffle_ps(xy, z, _MM_SHUFFLE(0, 0, 1, 0));
59#elif defined(JPH_USE_NEON)
60 float32x2_t xy = vld1_f32(&inV.
x);
61 float32x2_t zz = vdup_n_f32(inV.
z);
62 mValue = vcombine_f32(xy, zz);
67 #ifdef JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
75#if defined(JPH_USE_SSE)
76 mValue = _mm_set_ps(inZ, inZ, inY, inX);
77#elif defined(JPH_USE_NEON)
78 uint32x2_t xy = vcreate_f32(
static_cast<uint64>(*
reinterpret_cast<uint32 *
>(&inX)) | (
static_cast<uint64>(*
reinterpret_cast<uint32 *
>(&inY)) << 32));
79 uint32x2_t zz = vcreate_f32(
static_cast<uint64>(*
reinterpret_cast<uint32*
>(&inZ)) | (
static_cast<uint64>(*
reinterpret_cast<uint32 *
>(&inZ)) << 32));
80 mValue = vcombine_f32(xy, zz);
85 #ifdef JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
91template<u
int32 SwizzleX, u
int32 SwizzleY, u
int32 SwizzleZ>
94 static_assert(SwizzleX <= 3,
"SwizzleX template parameter out of range");
95 static_assert(SwizzleY <= 3,
"SwizzleY template parameter out of range");
96 static_assert(SwizzleZ <= 3,
"SwizzleZ template parameter out of range");
98#if defined(JPH_USE_SSE)
99 return _mm_shuffle_ps(
mValue,
mValue, _MM_SHUFFLE(SwizzleZ, SwizzleZ, SwizzleY, SwizzleX));
100#elif defined(JPH_USE_NEON)
101 return JPH_NEON_SHUFFLE_F32x4(
mValue,
mValue, SwizzleX, SwizzleY, SwizzleZ, SwizzleZ);
109#if defined(JPH_USE_SSE)
110 return _mm_setzero_ps();
111#elif defined(JPH_USE_NEON)
112 return vdupq_n_f32(0);
114 return Vec3(0, 0, 0);
120#if defined(JPH_USE_SSE)
121 return _mm_set1_ps(inV);
122#elif defined(JPH_USE_NEON)
123 return vdupq_n_f32(inV);
125 return Vec3(inV, inV, inV);
131 return sReplicate(numeric_limits<float>::quiet_NaN());
136#if defined(JPH_USE_SSE)
137 Type v = _mm_loadu_ps(&inV.
x);
138#elif defined(JPH_USE_NEON)
139 Type v = vld1q_f32(&inV.
x);
141 Type v = { inV.
x, inV.
y, inV.
z };
148#if defined(JPH_USE_SSE)
150#elif defined(JPH_USE_NEON)
161#if defined(JPH_USE_SSE)
163#elif defined(JPH_USE_NEON)
174 return sMax(
sMin(inV, inMax), inMin);
179#if defined(JPH_USE_SSE)
180 return _mm_castps_si128(_mm_cmpeq_ps(inV1.
mValue, inV2.
mValue));
181#elif defined(JPH_USE_NEON)
186 inV1.
mF32[1] == inV2.
mF32[1]? 0xffffffffu : 0,
194#if defined(JPH_USE_SSE)
195 return _mm_castps_si128(_mm_cmplt_ps(inV1.
mValue, inV2.
mValue));
196#elif defined(JPH_USE_NEON)
201 inV1.
mF32[1] < inV2.
mF32[1]? 0xffffffffu : 0,
209#if defined(JPH_USE_SSE)
210 return _mm_castps_si128(_mm_cmple_ps(inV1.
mValue, inV2.
mValue));
211#elif defined(JPH_USE_NEON)
216 inV1.
mF32[1] <= inV2.
mF32[1]? 0xffffffffu : 0,
224#if defined(JPH_USE_SSE)
225 return _mm_castps_si128(_mm_cmpgt_ps(inV1.
mValue, inV2.
mValue));
226#elif defined(JPH_USE_NEON)
231 inV1.
mF32[1] > inV2.
mF32[1]? 0xffffffffu : 0,
239#if defined(JPH_USE_SSE)
240 return _mm_castps_si128(_mm_cmpge_ps(inV1.
mValue, inV2.
mValue));
241#elif defined(JPH_USE_NEON)
246 inV1.
mF32[1] >= inV2.
mF32[1]? 0xffffffffu : 0,
254#if defined(JPH_USE_SSE)
260#elif defined(JPH_USE_NEON)
271#if defined(JPH_USE_SSE4_1)
274#elif defined(JPH_USE_NEON)
279 for (
int i = 0; i < 3; i++)
281#ifdef JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
290#if defined(JPH_USE_SSE)
292#elif defined(JPH_USE_NEON)
301#if defined(JPH_USE_SSE)
303#elif defined(JPH_USE_NEON)
312#if defined(JPH_USE_SSE)
314#elif defined(JPH_USE_NEON)
328template <
class Random>
331 std::uniform_real_distribution<float> zero_to_one(0.0f, 1.0f);
332 float theta = JPH_PI * zero_to_one(inRandom);
333 float phi = 2.0f * JPH_PI * zero_to_one(inRandom);
344 return (inV2 - *
this).LengthSq() <= inMaxDistSq;
354#if defined(JPH_USE_SSE)
356#elif defined(JPH_USE_NEON)
365#if defined(JPH_USE_SSE)
366 return _mm_mul_ps(
mValue, _mm_set1_ps(inV2));
367#elif defined(JPH_USE_NEON)
368 return vmulq_n_f32(
mValue, inV2);
376#if defined(JPH_USE_SSE)
377 return _mm_mul_ps(_mm_set1_ps(inV1), inV2.
mValue);
378#elif defined(JPH_USE_NEON)
379 return vmulq_n_f32(inV2.
mValue, inV1);
387#if defined(JPH_USE_SSE)
388 return _mm_div_ps(
mValue, _mm_set1_ps(inV2));
389#elif defined(JPH_USE_NEON)
390 return vdivq_f32(
mValue, vdupq_n_f32(inV2));
398#if defined(JPH_USE_SSE)
400#elif defined(JPH_USE_NEON)
403 for (
int i = 0; i < 3; ++i)
405 #ifdef JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
414#if defined(JPH_USE_SSE)
416#elif defined(JPH_USE_NEON)
419 for (
int i = 0; i < 3; ++i)
421 #ifdef JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
430#if defined(JPH_USE_SSE)
432#elif defined(JPH_USE_NEON)
435 for (
int i = 0; i < 3; ++i)
437 #ifdef JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
446#if defined(JPH_USE_SSE)
448#elif defined(JPH_USE_NEON)
457#if defined(JPH_USE_SSE)
459#elif defined(JPH_USE_NEON)
462 for (
int i = 0; i < 3; ++i)
464 #ifdef JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
473#if defined(JPH_USE_SSE)
474 return _mm_sub_ps(_mm_setzero_ps(),
mValue);
475#elif defined(JPH_USE_NEON)
484#if defined(JPH_USE_SSE)
486#elif defined(JPH_USE_NEON)
495#if defined(JPH_USE_SSE)
497#elif defined(JPH_USE_NEON)
500 for (
int i = 0; i < 3; ++i)
502 #ifdef JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
512#if defined(JPH_USE_SSE)
514#elif defined(JPH_USE_NEON)
523#if defined(JPH_USE_SSE)
524 return _mm_shuffle_ps(
mValue,
mValue, _MM_SHUFFLE(0, 0, 0, 0));
525#elif defined(JPH_USE_NEON)
526 return vdupq_laneq_f32(
mValue, 0);
534#if defined(JPH_USE_SSE)
535 return _mm_shuffle_ps(
mValue,
mValue, _MM_SHUFFLE(1, 1, 1, 1));
536#elif defined(JPH_USE_NEON)
537 return vdupq_laneq_f32(
mValue, 1);
545#if defined(JPH_USE_SSE)
546 return _mm_shuffle_ps(
mValue,
mValue, _MM_SHUFFLE(2, 2, 2, 2));
547#elif defined(JPH_USE_NEON)
548 return vdupq_laneq_f32(
mValue, 2);
566#if defined(JPH_USE_AVX512)
568#elif defined(JPH_USE_SSE)
569 return _mm_max_ps(_mm_sub_ps(_mm_setzero_ps(),
mValue),
mValue);
570#elif defined(JPH_USE_NEON)
584#if defined(JPH_USE_SSE)
585 Type t1 = _mm_shuffle_ps(inV2.
mValue, inV2.
mValue, _MM_SHUFFLE(0, 0, 2, 1));
586 t1 = _mm_mul_ps(t1,
mValue);
588 t2 = _mm_mul_ps(t2, inV2.
mValue);
589 Type t3 = _mm_sub_ps(t1, t2);
590 return _mm_shuffle_ps(t3, t3, _MM_SHUFFLE(0, 0, 2, 1));
591#elif defined(JPH_USE_NEON)
593 t1 = vmulq_f32(t1,
mValue);
595 t2 = vmulq_f32(t2, inV2.
mValue);
596 Type t3 = vsubq_f32(t1, t2);
597 return JPH_NEON_SHUFFLE_F32x4(t3, t3, 1, 2, 0, 0);
607#if defined(JPH_USE_SSE4_1)
609#elif defined(JPH_USE_NEON)
611 mul = vsetq_lane_f32(0, mul, 3);
612 return vdupq_n_f32(vaddvq_f32(mul));
615 for (
int i = 0; i < 3; i++)
623#if defined(JPH_USE_SSE4_1)
625#elif defined(JPH_USE_NEON)
627 mul = vsetq_lane_f32(0, mul, 3);
628 return vdupq_n_f32(vaddvq_f32(mul));
631 for (
int i = 0; i < 3; i++)
639#if defined(JPH_USE_SSE4_1)
640 return _mm_cvtss_f32(_mm_dp_ps(
mValue, inV2.
mValue, 0x7f));
641#elif defined(JPH_USE_NEON)
643 mul = vsetq_lane_f32(0, mul, 3);
644 return vaddvq_f32(mul);
647 for (
int i = 0; i < 3; i++)
655#if defined(JPH_USE_SSE4_1)
657#elif defined(JPH_USE_NEON)
659 mul = vsetq_lane_f32(0, mul, 3);
660 return vaddvq_f32(mul);
663 for (
int i = 0; i < 3; i++)
671#if defined(JPH_USE_SSE4_1)
672 return _mm_cvtss_f32(_mm_sqrt_ss(_mm_dp_ps(
mValue,
mValue, 0x7f)));
673#elif defined(JPH_USE_NEON)
675 mul = vsetq_lane_f32(0, mul, 3);
676 float32x2_t sum = vdup_n_f32(vaddvq_f32(mul));
677 return vget_lane_f32(vsqrt_f32(sum), 0);
685#if defined(JPH_USE_SSE)
686 return _mm_sqrt_ps(
mValue);
687#elif defined(JPH_USE_NEON)
688 return vsqrtq_f32(
mValue);
696#if defined(JPH_USE_SSE4_1)
698#elif defined(JPH_USE_NEON)
700 mul = vsetq_lane_f32(0, mul, 3);
701 float32x4_t sum = vdupq_n_f32(vaddvq_f32(mul));
702 return vdivq_f32(
mValue, vsqrtq_f32(sum));
710#if defined(JPH_USE_SSE4_1)
712 Type is_zero = _mm_cmpeq_ps(len_sq, _mm_setzero_ps());
713#ifdef JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
714 if (_mm_movemask_ps(is_zero) == 0xf)
717 return _mm_div_ps(
mValue, _mm_sqrt_ps(len_sq));
719 return _mm_blendv_ps(_mm_div_ps(
mValue, _mm_sqrt_ps(len_sq)), inZeroValue.
mValue, is_zero);
721#elif defined(JPH_USE_NEON)
723 mul = vsetq_lane_f32(0, mul, 3);
724 float32x4_t sum = vdupq_n_f32(vaddvq_f32(mul));
725 float32x4_t len = vsqrtq_f32(sum);
726 float32x4_t is_zero = vceqq_f32(len, vdupq_n_f32(0));
727 return vbslq_f32(is_zero, inZeroValue.
mValue, vdivq_f32(
mValue, len));
733 return *
this / sqrt(len_sq);
739 return abs(
LengthSq() - 1.0f) <= inTolerance;
744#if defined(JPH_USE_AVX512)
745 return (_mm_fpclass_ps_mask(
mValue, 0b10000001) & 0x7) != 0;
746#elif defined(JPH_USE_SSE)
747 return (_mm_movemask_ps(_mm_cmpunord_ps(
mValue,
mValue)) & 0x7) != 0;
748#elif defined(JPH_USE_NEON)
749 uint32x4_t mask = JPH_NEON_UINT32x4(1, 1, 1, 0);
751 return vaddvq_u32(vandq_u32(is_equal, mask)) != 3;
753 return isnan(
mF32[0]) || isnan(
mF32[1]) || isnan(
mF32[2]);
759#if defined(JPH_USE_SSE)
760 _mm_store_ss(&outV->
x,
mValue);
761 Vec3 t = Swizzle<SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_UNUSED>();
762 _mm_store_ss(&outV->
y, t.
mValue);
764 _mm_store_ss(&outV->
z, t.
mValue);
765#elif defined(JPH_USE_NEON)
766 float32x2_t xy = vget_low_f32(
mValue);
767 vst1_f32(&outV->
x, xy);
768 vst1q_lane_f32(&outV->
z,
mValue, 2);
778#if defined(JPH_USE_SSE)
779 return _mm_cvttps_epi32(
mValue);
780#elif defined(JPH_USE_NEON)
781 return vcvtq_u32_f32(
mValue);
789#if defined(JPH_USE_SSE)
791#elif defined(JPH_USE_NEON)
792 return vreinterpretq_u32_f32(
mValue);
794 return *
reinterpret_cast<const UVec4 *
>(
this);
800 Vec3 v =
sMin(
mValue, Swizzle<SWIZZLE_Y, SWIZZLE_UNUSED, SWIZZLE_Z>());
807 Vec3 v =
sMax(
mValue, Swizzle<SWIZZLE_Y, SWIZZLE_UNUSED, SWIZZLE_Z>());
828#if defined(JPH_USE_AVX512)
829 return _mm_fixupimm_ps(
mValue,
mValue, _mm_set1_epi32(0xA9A90A00), 0);
830#elif defined(JPH_USE_SSE)
831 Type minus_one = _mm_set1_ps(-1.0f);
832 Type one = _mm_set1_ps(1.0f);
833 return _mm_or_ps(_mm_and_ps(
mValue, minus_one), one);
834#elif defined(JPH_USE_NEON)
835 Type minus_one = vdupq_n_f32(-1.0f);
836 Type one = vdupq_n_f32(1.0f);
837 return vorrq_s32(vandq_s32(
mValue, minus_one), one);
839 return Vec3(signbit(
mF32[0])? -1.0f : 1.0f,
840 signbit(
mF32[1])? -1.0f : 1.0f,
841 signbit(
mF32[2])? -1.0f : 1.0f);
#define JPH_SUPPRESS_WARNINGS_STD_BEGIN
Definition Core.h:245
uint32_t uint32
Definition Core.h:312
#define JPH_SUPPRESS_WARNINGS_STD_END
Definition Core.h:255
#define JPH_NAMESPACE_END
Definition Core.h:240
uint64_t uint64
Definition Core.h:313
#define JPH_NAMESPACE_BEGIN
Definition Core.h:234
#define JPH_MAKE_HASHABLE(type,...)
Definition HashCombine.h:87
#define JPH_ASSERT(...)
Definition IssueReporting.h:33
@ SWIZZLE_Z
Use the Z component.
Definition Swizzle.h:14
@ SWIZZLE_UNUSED
We always use the Z component when we don't specifically want to initialize a value,...
Definition Swizzle.h:16
@ SWIZZLE_Y
Use the Y component.
Definition Swizzle.h:13
Vec3 operator*(float inV1, Vec3Arg inV2)
Definition Vec3.inl:374
Class that holds 3 floats. Used as a storage class. Convert to Vec3 for calculations.
Definition Float3.h:13
float y
Definition Float3.h:38
float z
Definition Float3.h:39
float x
Definition Float3.h:37
static JPH_INLINE UVec4 sAnd(UVec4Arg inV1, UVec4Arg inV2)
Logical and (component wise)
Definition UVec4.inl:194
static JPH_INLINE UVec4 sOr(UVec4Arg inV1, UVec4Arg inV2)
Logical or (component wise)
Definition UVec4.inl:166
JPH_INLINE bool TestAllXYZTrue() const
Test if X, Y and Z components are true (true is when highest bit of component is set)
Definition UVec4.inl:405
Type mValue
Definition UVec4.h:210
static JPH_INLINE UVec4 sXor(UVec4Arg inV1, UVec4Arg inV2)
Logical xor (component wise)
Definition UVec4.inl:180
JPH_INLINE Vec4 ReinterpretAsFloat() const
Reinterpret UVec4 as a Vec4 (doesn't change the bits)
Definition UVec4.inl:332
uint32 mU32[4]
Definition UVec4.h:211
JPH_INLINE bool IsClose(Vec3Arg inV2, float inMaxDistSq=1.0e-12f) const
Test if two vectors are close.
Definition Vec3.inl:342
static JPH_INLINE Vec3 sMax(Vec3Arg inV1, Vec3Arg inV2)
Return the maximum of each of the components.
Definition Vec3.inl:159
JPH_INLINE float Dot(Vec3Arg inV2) const
Dot product.
Definition Vec3.inl:637
JPH_INLINE Vec3 Normalized() const
Normalize vector.
Definition Vec3.inl:694
static JPH_INLINE Type sFixW(Type inValue)
Internal helper function that ensures that the Z component is replicated to the W component to preven...
Vec4::Type Type
Definition Vec3.h:26
JPH_INLINE bool operator==(Vec3Arg inV2) const
Comparison.
Definition Vec3.inl:337
JPH_INLINE Vec4 SplatX() const
Replicate the X component to all components.
Definition Vec3.inl:521
static JPH_INLINE Vec3 sMin(Vec3Arg inV1, Vec3Arg inV2)
Return the minimum value of each of the components.
Definition Vec3.inl:146
JPH_INLINE Vec3 Cross(Vec3Arg inV2) const
Cross product.
Definition Vec3.inl:582
JPH_INLINE Vec3 GetNormalizedPerpendicular() const
Get normalized vector that is perpendicular to this vector.
Definition Vec3.inl:812
static Vec3 sRandom(Random &inRandom)
Get random unit vector.
Definition Vec3.inl:329
JPH_INLINE float GetX() const
Get individual components.
Definition Vec3.h:122
JPH_INLINE bool IsNormalized(float inTolerance=1.0e-6f) const
Test if vector is normalized.
Definition Vec3.inl:737
static JPH_INLINE Vec3 sXor(Vec3Arg inV1, Vec3Arg inV2)
Logical xor (component wise)
Definition Vec3.inl:299
JPH_INLINE float Length() const
Length of vector.
Definition Vec3.inl:669
static JPH_INLINE UVec4 sGreaterOrEqual(Vec3Arg inV1, Vec3Arg inV2)
Greater than or equal (component wise)
Definition Vec3.inl:237
JPH_INLINE float ReduceMin() const
Get the minimum of X, Y and Z.
Definition Vec3.inl:798
JPH_INLINE Vec3 & operator-=(Vec3Arg inV2)
Add two float vectors (component wise)
Definition Vec3.inl:493
JPH_INLINE float ReduceMax() const
Get the maximum of X, Y and Z.
Definition Vec3.inl:805
static JPH_INLINE UVec4 sLessOrEqual(Vec3Arg inV1, Vec3Arg inV2)
Less than or equal (component wise)
Definition Vec3.inl:207
JPH_INLINE Vec3 operator/(float inV2) const
Divide vector by float.
Definition Vec3.inl:385
friend JPH_INLINE Vec3 operator*(float inV1, Vec3Arg inV2)
Multiply vector with float.
Definition Vec3.inl:374
JPH_INLINE int GetLowestComponentIndex() const
Get index of component with lowest value.
Definition Vec3.inl:554
JPH_INLINE Vec3 & operator/=(float inV2)
Divide vector by float.
Definition Vec3.inl:428
JPH_INLINE Vec4 DotV4(Vec3Arg inV2) const
Dot product, returns the dot product in X, Y, Z and W components.
Definition Vec3.inl:621
JPH_INLINE Vec3 Abs() const
Return the absolute value of each of the components.
Definition Vec3.inl:564
JPH_INLINE Vec3 Reciprocal() const
Reciprocal vector (1 / value) for each of the components.
Definition Vec3.inl:577
JPH_INLINE Vec3 NormalizedOr(Vec3Arg inZeroValue) const
Normalize vector or return inZeroValue if the length of the vector is zero.
Definition Vec3.inl:708
JPH_INLINE Vec3 operator+(Vec3Arg inV2) const
Add two float vectors (component wise)
Definition Vec3.inl:444
JPH_INLINE Vec4 SplatZ() const
Replicate the Z component to all components.
Definition Vec3.inl:543
static JPH_INLINE Vec3 sOr(Vec3Arg inV1, Vec3Arg inV2)
Logical or (component wise)
Definition Vec3.inl:288
static JPH_INLINE UVec4 sGreater(Vec3Arg inV1, Vec3Arg inV2)
Greater than (component wise)
Definition Vec3.inl:222
static JPH_INLINE Vec3 sAnd(Vec3Arg inV1, Vec3Arg inV2)
Logical and (component wise)
Definition Vec3.inl:310
JPH_INLINE void CheckW() const
Internal helper function that checks that W is equal to Z, so e.g. dividing by it should not generate...
static JPH_INLINE Vec3 sSelect(Vec3Arg inV1, Vec3Arg inV2, UVec4Arg inControl)
Component wise select, returns inV1 when highest bit of inControl = 0 and inV2 when highest bit of in...
Definition Vec3.inl:269
static JPH_INLINE Vec3 sUnitSpherical(float inTheta, float inPhi)
Definition Vec3.inl:321
JPH_INLINE UVec4 ToInt() const
Convert each component from a float to an int.
Definition Vec3.inl:776
Type mValue
Definition Vec3.h:281
JPH_INLINE float GetY() const
Definition Vec3.h:123
JPH_INLINE Vec4 SplatY() const
Replicate the Y component to all components.
Definition Vec3.inl:532
JPH_INLINE Vec3 operator-() const
Negate.
Definition Vec3.inl:471
JPH_INLINE void StoreFloat3(Float3 *outV) const
Store 3 floats to memory.
Definition Vec3.inl:757
JPH_INLINE float LengthSq() const
Squared length of vector.
Definition Vec3.inl:653
float mF32[4]
Definition Vec3.h:282
static JPH_INLINE UVec4 sEquals(Vec3Arg inV1, Vec3Arg inV2)
Equals (component wise)
Definition Vec3.inl:177
JPH_INLINE bool IsNearZero(float inMaxDistSq=1.0e-12f) const
Test if vector is near zero.
Definition Vec3.inl:347
static JPH_INLINE Vec3 sZero()
Vector with all zeros.
Definition Vec3.inl:107
static JPH_INLINE UVec4 sLess(Vec3Arg inV1, Vec3Arg inV2)
Less than (component wise)
Definition Vec3.inl:192
static JPH_INLINE Vec3 sReplicate(float inV)
Replicate inV across all components.
Definition Vec3.inl:118
static JPH_INLINE Vec3 sClamp(Vec3Arg inV, Vec3Arg inMin, Vec3Arg inMax)
Clamp a vector between min and max (component wise)
Definition Vec3.inl:172
JPH_INLINE Vec3 & operator*=(float inV2)
Multiply vector with float.
Definition Vec3.inl:396
JPH_INLINE Vec3 & operator+=(Vec3Arg inV2)
Add two float vectors (component wise)
Definition Vec3.inl:455
JPH_INLINE bool IsNaN() const
Test if vector contains NaN elements.
Definition Vec3.inl:742
JPH_INLINE Vec3 Sqrt() const
Component wise square root.
Definition Vec3.inl:683
JPH_INLINE UVec4 ReinterpretAsInt() const
Reinterpret Vec3 as a UVec4 (doesn't change the bits)
Definition Vec3.inl:787
JPH_INLINE Vec3 DotV(Vec3Arg inV2) const
Dot product, returns the dot product in X, Y and Z components.
Definition Vec3.inl:605
static JPH_INLINE Vec3 sLoadFloat3Unsafe(const Float3 &inV)
Load 3 floats from memory (reads 32 bits extra which it doesn't use)
Definition Vec3.inl:134
JPH_INLINE float GetZ() const
Definition Vec3.h:124
JPH_INLINE Vec3 GetSign() const
Get vector that contains the sign of each element (returns 1.0f if positive, -1.0f if negative)
Definition Vec3.inl:826
static JPH_INLINE Vec3 sNaN()
Vector with all NaN's.
Definition Vec3.inl:129
Vec3()=default
Constructor.
JPH_INLINE int GetHighestComponentIndex() const
Get index of component with highest value.
Definition Vec3.inl:559
static JPH_INLINE Vec3 sFusedMultiplyAdd(Vec3Arg inMul1, Vec3Arg inMul2, Vec3Arg inAdd)
Calculates inMul1 * inMul2 + inAdd.
Definition Vec3.inl:252
JPH_INLINE Vec3 Swizzle() const
Swizzle the elements in inV.
JPH_INLINE float GetX() const
Get individual components.
Definition Vec4.h:112
JPH_INLINE float GetY() const
Definition Vec4.h:113
static JPH_INLINE Vec4 sReplicate(float inV)
Replicate inV across all components.
Definition Vec4.inl:74
void SinCos(Vec4 &outSin, Vec4 &outCos) const
Calcluate the sine and cosine for each element of this vector (input in radians)
Definition Vec4.inl:772