Jolt Physics
A multi core friendly Game Physics Engine
Loading...
Searching...
No Matches
Body.inl
Go to the documentation of this file.
1// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
2// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
3// SPDX-License-Identifier: MIT
4
5#pragma once
6
8
10{
11 JPH_ASSERT(BodyAccess::sCheckRights(BodyAccess::sPositionAccess, BodyAccess::EAccess::Read));
12
13 return RMat44::sRotationTranslation(mRotation, mPosition).PreTranslated(-mShape->GetCenterOfMass());
14}
15
17{
18 JPH_ASSERT(BodyAccess::sCheckRights(BodyAccess::sPositionAccess, BodyAccess::EAccess::Read));
19
20 return RMat44::sRotationTranslation(mRotation, mPosition);
21}
22
24{
25 JPH_ASSERT(BodyAccess::sCheckRights(BodyAccess::sPositionAccess, BodyAccess::EAccess::Read));
26
27 return RMat44::sInverseRotationTranslation(mRotation, mPosition);
28}
29
30inline bool Body::sFindCollidingPairsCanCollide(const Body &inBody1, const Body &inBody2)
31{
32 // One of these conditions must be true
33 // - One of the bodies must be dynamic to collide
34 // - A kinematic object can collide with a sensor
35 if ((!inBody1.IsDynamic() && !inBody2.IsDynamic())
36 && !(inBody1.IsKinematic() && inBody2.IsSensor())
37 && !(inBody2.IsKinematic() && inBody1.IsSensor()))
38 return false;
39
40 // Check that body 1 is active
41 uint32 body1_index_in_active_bodies = inBody1.GetIndexInActiveBodiesInternal();
42 JPH_ASSERT(!inBody1.IsStatic() && body1_index_in_active_bodies != Body::cInactiveIndex, "This function assumes that Body 1 is active");
43
44 // If the pair A, B collides we need to ensure that the pair B, A does not collide or else we will handle the collision twice.
45 // If A is the same body as B we don't want to collide (1)
46 // If A is dynamic and B is static we should collide (2)
47 // If A is dynamic / kinematic and B is dynamic / kinematic we should only collide if (kinematic vs kinematic is ruled out by the if above)
48 // - A is active and B is not yet active (3)
49 // - A is active and B will become active during this simulation step (4)
50 // - A is active and B is active, we require a condition that makes A, B collide and B, A not (5)
51 //
52 // In order to implement this we use the index in the active body list and make use of the fact that
53 // a body not in the active list has Body.Index = 0xffffffff which is the highest possible value for an uint32.
54 //
55 // Because we know that A is active we know that A.Index != 0xffffffff:
56 // (1) Because A.Index != 0xffffffff, if A.Index = B.Index then A = B, so to collide A.Index != B.Index
57 // (2) A.Index != 0xffffffff, B.Index = 0xffffffff (because it's static and cannot be in the active list), so to collide A.Index != B.Index
58 // (3) A.Index != 0xffffffff, B.Index = 0xffffffff (because it's not yet active), so to collide A.Index != B.Index
59 // (4) A.Index != 0xffffffff, B.Index = 0xffffffff currently. But it can activate during the Broad/NarrowPhase step at which point it
60 // will be added to the end of the active list which will make B.Index > A.Index (this holds only true when we don't deactivate
61 // bodies during the Broad/NarrowPhase step), so to collide A.Index < B.Index.
62 // (5) As tie breaker we can use the same condition A.Index < B.Index to collide, this means that if A, B collides then B, A won't
63 static_assert(Body::cInactiveIndex == 0xffffffff, "The algorithm below uses this value");
64 if (body1_index_in_active_bodies >= inBody2.GetIndexInActiveBodiesInternal())
65 return false;
66 JPH_ASSERT(inBody1.GetID() != inBody2.GetID(), "Read the comment above, A and B are the same body which should not be possible!");
67
68 // Bodies in the same group don't collide
69 if (!inBody1.GetCollisionGroup().CanCollide(inBody2.GetCollisionGroup()))
70 return false;
71
72 return true;
73}
74
75void Body::AddRotationStep(Vec3Arg inAngularVelocityTimesDeltaTime)
76{
77 JPH_ASSERT(BodyAccess::sCheckRights(BodyAccess::sPositionAccess, BodyAccess::EAccess::ReadWrite));
78
79 // This used to use the equation: d/dt R(t) = 1/2 * w(t) * R(t) so that R(t + dt) = R(t) + 1/2 * w(t) * R(t) * dt
80 // See: Appendix B of An Introduction to Physically Based Modeling: Rigid Body Simulation II-Nonpenetration Constraints
81 // URL: https://www.cs.cmu.edu/~baraff/sigcourse/notesd2.pdf
82 // But this is a first order approximation and does not work well for kinematic ragdolls that are driven to a new
83 // pose if the poses differ enough. So now we split w(t) * dt into an axis and angle part and create a quaternion with it.
84 // Note that the resulting quaternion is normalized since otherwise numerical drift will eventually make the rotation non-normalized.
85 float len = inAngularVelocityTimesDeltaTime.Length();
86 if (len > 1.0e-6f)
87 {
88 mRotation = (Quat::sRotation(inAngularVelocityTimesDeltaTime / len, len) * mRotation).Normalized();
89 JPH_ASSERT(!mRotation.IsNaN());
90 }
91}
92
93void Body::SubRotationStep(Vec3Arg inAngularVelocityTimesDeltaTime)
94{
95 JPH_ASSERT(BodyAccess::sCheckRights(BodyAccess::sPositionAccess, BodyAccess::EAccess::ReadWrite));
96
97 // See comment at Body::AddRotationStep
98 float len = inAngularVelocityTimesDeltaTime.Length();
99 if (len > 1.0e-6f)
100 {
101 mRotation = (Quat::sRotation(inAngularVelocityTimesDeltaTime / len, -len) * mRotation).Normalized();
102 JPH_ASSERT(!mRotation.IsNaN());
103 }
104}
105
106Vec3 Body::GetWorldSpaceSurfaceNormal(const SubShapeID &inSubShapeID, RVec3Arg inPosition) const
107{
109 return inv_com.Multiply3x3Transposed(mShape->GetSurfaceNormal(inSubShapeID, Vec3(inv_com * inPosition))).Normalized();
110}
111
118
119void Body::AddForce(Vec3Arg inForce, RVec3Arg inPosition)
120{
121 AddForce(inForce);
122 AddTorque(Vec3(inPosition - mPosition).Cross(inForce));
123}
124
126{
128
129 SetLinearVelocityClamped(mMotionProperties->GetLinearVelocity() + inImpulse * mMotionProperties->GetInverseMass());
130}
131
132void Body::AddImpulse(Vec3Arg inImpulse, RVec3Arg inPosition)
133{
135
136 SetLinearVelocityClamped(mMotionProperties->GetLinearVelocity() + inImpulse * mMotionProperties->GetInverseMass());
137
138 SetAngularVelocityClamped(mMotionProperties->GetAngularVelocity() + mMotionProperties->MultiplyWorldSpaceInverseInertiaByVector(mRotation, Vec3(inPosition - mPosition).Cross(inImpulse)));
139}
140
141void Body::AddAngularImpulse(Vec3Arg inAngularImpulse)
142{
144
145 SetAngularVelocityClamped(mMotionProperties->GetAngularVelocity() + mMotionProperties->MultiplyWorldSpaceInverseInertiaByVector(mRotation, inAngularImpulse));
146}
147
148void Body::GetSleepTestPoints(RVec3 *outPoints) const
149{
150 JPH_ASSERT(BodyAccess::sCheckRights(BodyAccess::sPositionAccess, BodyAccess::EAccess::Read));
151
152 // Center of mass is the first position
153 outPoints[0] = mPosition;
154
155 // The second and third position are on the largest axis of the bounding box
156 Vec3 extent = mShape->GetLocalBounds().GetExtent();
157 int lowest_component = extent.GetLowestComponentIndex();
158 Mat44 rotation = Mat44::sRotation(mRotation);
159 switch (lowest_component)
160 {
161 case 0:
162 outPoints[1] = mPosition + extent.GetY() * rotation.GetColumn3(1);
163 outPoints[2] = mPosition + extent.GetZ() * rotation.GetColumn3(2);
164 break;
165
166 case 1:
167 outPoints[1] = mPosition + extent.GetX() * rotation.GetColumn3(0);
168 outPoints[2] = mPosition + extent.GetZ() * rotation.GetColumn3(2);
169 break;
170
171 case 2:
172 outPoints[1] = mPosition + extent.GetX() * rotation.GetColumn3(0);
173 outPoints[2] = mPosition + extent.GetY() * rotation.GetColumn3(1);
174 break;
175
176 default:
177 JPH_ASSERT(false);
178 break;
179 }
180}
181
182void Body::ResetSleepTestSpheres()
183{
184 RVec3 points[3];
185 GetSleepTestPoints(points);
186 mMotionProperties->ResetSleepTestSpheres(points);
187}
188
uint32_t uint32
Definition Core.h:312
#define JPH_NAMESPACE_END
Definition Core.h:240
#define JPH_NAMESPACE_BEGIN
Definition Core.h:234
#define JPH_ASSERT(...)
Definition IssueReporting.h:33
Vec3 GetExtent() const
Get extent of bounding box (half of the size)
Definition AABox.h:111
Definition Body.h:33
const MotionProperties * GetMotionProperties() const
Access to the motion properties.
Definition Body.h:205
Vec3 GetWorldSpaceSurfaceNormal(const SubShapeID &inSubShapeID, RVec3Arg inPosition) const
Get surface normal of a particular sub shape and its world space surface position on this body.
Definition Body.inl:106
bool IsDynamic() const
Check if this body is dynamic, which means that it moves and forces can act on it.
Definition Body.h:56
bool IsSensor() const
Check if this body is a sensor.
Definition Body.h:69
void AddRotationStep(Vec3Arg inAngularVelocityTimesDeltaTime)
Update rotation using an Euler step (using during position integrate & constraint solving)
Definition Body.inl:75
RMat44 GetWorldTransform() const
Calculates the transform of this body.
Definition Body.inl:9
const CollisionGroup & GetCollisionGroup() const
Collision group and sub-group ID, determines which other objects it collides with.
Definition Body.h:92
void SetLinearVelocityClamped(Vec3Arg inLinearVelocity)
Set world space linear velocity of the center of mass, will make sure the value is clamped against th...
Definition Body.h:115
uint32 GetIndexInActiveBodiesInternal() const
Access to the index in the BodyManager::mActiveBodies list.
Definition Body.h:269
static constexpr uint32 cInactiveIndex
Constant indicating that body is not active.
Definition Body.h:288
static bool sFindCollidingPairsCanCollide(const Body &inBody1, const Body &inBody2)
Definition Body.inl:30
Mat44 GetInverseInertia() const
Get inverse inertia tensor in world space.
Definition Body.inl:112
bool IsStatic() const
Check if this body is static (not movable)
Definition Body.h:50
void SetAngularVelocityClamped(Vec3Arg inAngularVelocity)
Set world space angular velocity of the center of mass, will make sure the value is clamped against t...
Definition Body.h:124
RMat44 GetCenterOfMassTransform() const
Calculates the transform for this body's center of mass.
Definition Body.inl:16
RMat44 GetInverseCenterOfMassTransform() const
Calculates the inverse of the transform for this body's center of mass.
Definition Body.inl:23
void AddAngularImpulse(Vec3Arg inAngularImpulse)
Add angular impulse in world space (unit: N m s)
Definition Body.inl:141
void SubRotationStep(Vec3Arg inAngularVelocityTimesDeltaTime)
Definition Body.inl:93
bool IsKinematic() const
Check if this body is kinematic (keyframed), which means that it will move according to its current v...
Definition Body.h:53
const BodyID & GetID() const
Get the id of this body.
Definition Body.h:44
void AddForce(Vec3Arg inForce)
Add force (unit: N) at center of mass for the next time step, will be reset after the next call to Ph...
Definition Body.h:133
void AddTorque(Vec3Arg inTorque)
Add torque (unit: N m) for the next time step, will be reset after the next call to PhysicsSimulation...
Definition Body.h:139
void AddImpulse(Vec3Arg inImpulse)
Add impulse to center of mass (unit: kg m/s)
Definition Body.inl:125
bool CanCollide(const CollisionGroup &inOther) const
Check if this object collides with another object.
Definition CollisionGroup.h:71
Holds a 4x4 matrix of floats, but supports also operations on the 3x3 upper left part of the matrix.
Definition Mat44.h:13
JPH_INLINE Mat44 PreTranslated(Vec3Arg inTranslation) const
Pre multiply by translation matrix: result = this * Mat44::sTranslation(inTranslation)
Definition Mat44.inl:1163
JPH_INLINE Vec3 Multiply3x3Transposed(Vec3Arg inV) const
Multiply vector by only 3x3 part of the transpose of the matrix ( )
Definition Mat44.inl:327
JPH_INLINE Vec3 GetColumn3(uint inCol) const
Definition Mat44.h:154
static JPH_INLINE Mat44 sRotationTranslation(QuatArg inR, Vec3Arg inT)
Get matrix that rotates and translates.
Definition Mat44.inl:149
static JPH_INLINE Mat44 sRotation(Vec3Arg inAxis, float inAngle)
Rotate around arbitrary axis.
Definition Mat44.inl:139
static JPH_INLINE Mat44 sInverseRotationTranslation(QuatArg inR, Vec3Arg inT)
Get inverse matrix of sRotationTranslation.
Definition Mat44.inl:156
Vec3 GetLinearVelocity() const
Get world space linear velocity of the center of mass.
Definition MotionProperties.h:28
Vec3 GetAngularVelocity() const
Get world space angular velocity of the center of mass.
Definition MotionProperties.h:37
float GetInverseMass() const
Get inverse mass (1 / mass). Should only be called on a dynamic object (static or kinematic bodies ha...
Definition MotionProperties.h:80
JPH_INLINE Vec3 MultiplyWorldSpaceInverseInertiaByVector(QuatArg inBodyRotation, Vec3Arg inV) const
Multiply a vector with the inverse world space inertia tensor ( ). Zero if object is static or kinema...
Definition MotionProperties.inl:90
void ResetSleepTestSpheres(const RVec3 *inPoints)
Reset spheres to center around inPoints with radius 0.
Definition MotionProperties.inl:121
Mat44 GetInverseInertiaForRotation(Mat44Arg inRotation) const
Get inverse inertia matrix ( ) for a given object rotation (translation will be ignored)....
Definition MotionProperties.inl:81
static JPH_INLINE Quat sRotation(Vec3Arg inAxis, float inAngle)
Rotation from axis and angle.
Definition Quat.inl:74
bool IsNaN() const
If any component of this quaternion is a NaN (not a number)
Definition Quat.h:61
virtual AABox GetLocalBounds() const =0
Get local bounding box including convex radius, this box is centered around the center of mass rather...
virtual Vec3 GetCenterOfMass() const
All shapes are centered around their center of mass. This function returns the center of mass positio...
Definition Shape.h:195
virtual Vec3 GetSurfaceNormal(const SubShapeID &inSubShapeID, Vec3Arg inLocalSurfacePosition) const =0
A sub shape id contains a path to an element (usually a triangle or other primitive type) of a compou...
Definition SubShapeID.h:23
Definition Vec3.h:16
JPH_INLINE Vec3 Normalized() const
Normalize vector.
Definition Vec3.inl:694
JPH_INLINE float GetX() const
Get individual components.
Definition Vec3.h:122
JPH_INLINE float Length() const
Length of vector.
Definition Vec3.inl:669
JPH_INLINE int GetLowestComponentIndex() const
Get index of component with lowest value.
Definition Vec3.inl:554
JPH_INLINE float GetY() const
Definition Vec3.h:123
JPH_INLINE float GetZ() const
Definition Vec3.h:124